ATTACHMENT 3: LABORATORY ANALYTICAL REPORTS (SUMMARY SHEETS)

This attachment contains the summary sheets from the laboratory analytical reports prepared by Applied Physics and Chemistry Laboratory (APCL) in Chino, California. Complete analytical reports are available upon request.

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to:

Battelle - Columbus Operations

Attention: David Conner

3990 Old Town Ave., Ste C102.

San Diego CA 92110

Tel: (619)574-4821 Fax: (619)260-0882

APCL Analytical Report

Service ID #: 801-053443

Collected by: M. Mendoza
Collected on: 07/19/05

Received: 07/19/05 Extracted: N/A

Tested: 07/20/05 Reported: 07/20/05

Sample Description: Water from 4800 Oak Grove. Project Description: G486090 JPL GW Mon-3Q05

Analysis of Water Samples

					Analysis Result	
Component Analyzed	Method	Unit	PQL	MW-25-1 05-03443-1	MW-25-3 05-03443-2	MW-25-4 05-03443-3
Dilution Factor				1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	11.7	14.3	10.0

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Respectfully submitted,

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NELAP No.:02114CA C1-1665 D006 № 05-3443 \$\lambda\$ Page: 1 of 1

J: Reported between PQL and MDL.

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to:

 ${\bf Battelle\ -\ Columbus\ Operations}$

Attention: David Conner

3990 Old Town Ave., Suite C-205

San Diego CA 92110

Tel: (619)574-4827 Fax: (619)260-0882

APCL Analytical Report

Service ID #: 801-053444 Collected by: M. Mendoza

Collected by: M. Mendoza Extracted: N/A
Collected on: 07/19/05 Tested: 07/20-25/05

Reported: 07/27/05

Received: 07/19/05

Sample Description: Water from 4800 Oak Grove Dr. Project Description: G486090 JPL GW Mon-3Q05

Analysis of Water Samples

~		~~ .		Analysis Result						
Component Analyzed	Method	Unit	PQL		.,,	MW-25-2 05-03444-3	MW-25-5 05-03444-6			
Dilution Factor					1	1	1			
PERCHLORATE	314.0	$_{\mu \mathrm{g/L}}$	4		< 4	17.4	< 4			
						Analysis Resu	lt			
Component Analyzed		Method	Unit	PQL	EB-1-7/19/0 05-03444-1	5 MW-25-1 05-03444-2	MW-25-2 05-03444-3			
CHROMIUM (VI)		7196	mg/L	0.01	< 0.01	< 0.01	< 0.01			
Dilution Factor					1	1	1			
CHROMIUM		200.8	$_{\mu}\mathrm{g/L}$	1	0.15J	6.9	5.2			

				1	Analysis nesul	Ն
Component Analyzed	Method	Unit	PQL	EB-1-7/19/05 05-03444-1	MW-25-1 05-03444-2	MW-25-2 05-03444-3
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01
Dilution Factor				1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	0.15J	6.9	5.2
VOLATILE ORGANIC COMPOUNDS						
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}^{'}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}^{'}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}^{ m g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 N 05-3444 Page: 1 of 4

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				A	Analysis Resul	t
Component Analyzed	Method	Unit	PQL	EB-1-7/19/05	MW-25-1	MW-25-2
				05-03444-1	05-03444-2	05-03444-3
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	<1	<1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	<10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 № 05-3444 \$\psi\$ Page: 2 of 4

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

	A. 64.40				Analy	sis Result	
Component Analyzed	Method	Unit	PQL	MW-25-3	MW-25-4	MW-25-5	TB-1-7/19/05
				05-03444-4	05-03444-5	05-03444-6	05-03444-7
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01	-
Dilution Factor				1	1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	8.5	9.1	6.4	-
VOLATILE ORGANIC COMPOUNDS							
Dilution Factor				1	1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.6	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 № 05-3444 b Page: 3 of 4

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analy	sis Result	
Component Analyzed	Method	Unit	PQL	MW-25-3	MW-25-4	MW-25-5	TB-1-7/19/05
	***			05-03444-4	05-03444-5	05-03444-6	05-03444-7
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	< 1	< 1	< 1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Laboratory Director

Respectfully submitt

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 № 05-3444 ↓ Page: 4 of 4

J: Reported between PQL and MDL.

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

1

Submitted to:

Battelle - Columbus Operations

Attention: David Conner

3990 Old Town Ave, Suite C102.

San Diego CA 92110

Tel: (619)726-7311 Fax: (619)260-0882

Service ID #: 801-053455

Collected by: M.Mendoza

Collected on: 07/20/05

Received: 07/20/05 Extracted: N/A

Tested: 07/20/05

Reported: 07/21/05

Sample Description: Water

Project Description: G486090 JPL GW Mon-3Q05

Analysis of Water Samples

Component Analyzed	Method	Unit	PQL	Analysis Result MW-19-2 05-03455-1
Dilution Factor				1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	6.7

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Respectfully submitted,

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 № 05-3455 ↓ Page: 1 of 1

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to:

Battelle - Columbus Operations

Attention: David Conner

3990 Old Town Ave., Suite C-205.

San Diego CA 92110

Tel: (619)574-4827 Fax: (619)260-0882

APCL Analytical Report

Service ID #: 801-053456 Collected by: M.Mendoza Collected on: 07/20/05

Received: 07/20/05 Extracted: N/A 07/21/05 Tested:

Reported: 07/28/05

Sample Description: Water

Project Description: G486090 JPL GW Mon-3Q05

Analysis of Water Samples

						Analysis Result			
Component Analyzed	Met	hod	Unit	P	•	7/20/05	MW-19-1		
					05-0	3456-1	05-03456-2		
Dilution Factor						1	1 <4		
PERCHLORATE	314	1.0	$_{\mu}\mathrm{g/L}$	•	1	< 4			
	····			Analysis Result					
Component Analyzed	Method	Unit	PQL		MW-19-3 05-03456-4	MW-19-4 05-03456-5	MW-19-5 05-03456-6		
Dilution Factor	W-1			,	1	1	1		
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4		3.2J	3.0J	2.7J		
					With the second		1.		
C		Method	Unit	PQL	EB-2-7/20/0	Analysis Resu 5 MW-19-1	It MW-19-2		
Component Analyzed		Method	Onit	rQL	05-03456-1	05-03456-2	05-03456-3		
VOLATILE ORGANIC COM	IPOUNDS								
Dilution Factor					1	1	1		
BENZENE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	0.6	< 0.5		
BROMOBENZENE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		
BROMOCHLOROMETH	ANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		
BROMODICHLOROMET	THANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		
BROMOFORM		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		
BROMOMETHANE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		
N-BUTYLBENZENE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		
SEC-BUTYLBENZENE		524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		
TERT-BUTYLBENZENE	,	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		
2-BUTANONE		524.2	$_{\mu}^{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10		
CARBON TETRACHLO	RIDE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		
CHLOROBENZENE		524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		
CHLORODIBROMOMET	THANE	524.2	$_{\mu}^{\mu}\mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5		
CHLOROETHANE		524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5		
CHLOROFORM		524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	0.4J		
CHLOROMETHANE		524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5		
2-CHLOROTOLUENE		524.2	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5		
			$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	-			< 0.5		

Page: 1 of 4 CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 X 05-3456 A

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					nalysis Resul	t
Component Analyzed	Method	Unit	PQL	EB-2-7/20/05 05-03456-1	MW-19-1 05-03456-2	MW-19-2 05-03456-3
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}^{\mu \mathrm{G}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	1	<1	0.6J	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$\mu g/L$	10	< 10	< 10	<10
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}^{\mu}\mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE		$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$\mu g/L$ $\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$ $\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2 524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$\mu g/L$ $\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
	524.2	•	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE 112TRICHLORO-122TRIFLUOROETHANE	524.2 524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
	524.2 524.2	-	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2 524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2 524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2 524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE M/P-XYLENE	524.2 524.2	$_{ m \mu g/L}$	0.5	< 0.5 < 0.5	< 0.5	0.4J

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 № 05-3456 ♥ Page: 2 of 4

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analy	sis Result	
Component Analyzed	Method	Unit	PQL	MW-19-3 05-03456-4	MW-19-4 05-03456-5	MW-19-5 05-03456-6	TB-2-7/20/05 05-03456-7
VOLATILE ORGANIC COMPOUNDS							
Dilution Factor				1	1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	0.4J	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	0.4J	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}^{'}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}^{\cdot}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}^{\prime}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 № 05-3456 ♥ Page: 3 of 4

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				Analysis Result						
Component Analyzed	Method	Unit	PQL	MW-19-3	MW-19-4	MW-19-5	TB-2-7/20/05			
				05-03456-4	05-03456-5	05-03456-6	05-03456-7			
P-ISOPROPYLTOLUENE	524.2	$_{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5			
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5			
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	< 1	< 1	< 1	< 1			
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10			
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5			
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5			
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5			
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5			
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5			
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	0.5J	1.7	< 0.5			
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5			
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5			
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5			
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5			
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5			
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5			
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5			
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5			
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5			
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5			
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5			
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5			
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5			
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	0.8	< 0.5	< 0.5			

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 № 05-3456 ₽ Page: 4 of 4

J: Reported between PQL and MDL.

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to:

Battelle - Columbus Operations

Attention: David Conner

3990 Old Town Ave, Suite C-205.

TERT-BUTYLBENZENE

CARBON TETRACHLORIDE

CHLORODIBROMOMETHANE

2-BUTANONE

CHLOROBENZENE

CHLOROETHANE

CHLOROMETHANE

CHLOROFORM

San Diego CA 92110

Tel: (619)726-7311 Fax: (619)260-0882

APCL Analytical Report

Service ID #: 801-053472 Collected by: M.Mendoza Collected on: 07/21/05

Received: 07/21/05 Extracted: 07/27/05 Tested: 07/22-28/05 Reported: 08/01/05

< 0.5

< 10

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

Sample Description: Water

Project Description: G486090 JPL GW Mon-3Q05

Analysis of Water Samples

				Analysis Result							
Component Analyzed	Method	Unit	PQL	EB-3-7/21/05 05-03472-1	MW-18-2 05-03472-3	MW-18-3 05-03472-4	MW-18-4 05-03472-5				
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01	< 0.01				
Dilution Factor		o,		1	1	1	1				
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	< 4	5.7	10.2				
Dilution Factor		•		1	1	1	1				
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	0.16 J	7.7	11.8	7.0				
Component Ana	Component Analyzed			Unit	PQL	Analysis Result MW-18-5 05-03472-6					
Dilution Facto	Dilution Factor					1					
PERCHLORAT	re ————	314.0		$_{\mu }\mathrm{g/L}$	4	< 4					
	<u> </u>					Analysis Result					
Component Analyzed		Method	Uni	t PQL	EB-3-7/21/05 05-03472-1	MW-18-1 05-03472-2	MW-18-2 05-03472-3				
Dilution Factor					1	1	1				
1,2,3-TRICHLOROPE	ROPANE	504.1	$\mu g/$	L = 0.005	< 0.005	< 0.005	< 0.005				
VOLATILE ORGANIC	COMPOUNI	os									
Dilution Factor					1	1	1				
BENZENE		524.2	$\mu g/3$	L = 0.5	< 0.5	-	< 0.5				
BROMOBENZENE		524.2	$\mu g/$		< 0.5	-	< 0.5				
BROMOCHLOROM	ETHANE	524.2	$\mu g/$	L = 0.5	< 0.5	-	< 0.5				
BROMODICHLORO	METHANE	524.2	$\mu g/$	L = 0.5	< 0.5	-	< 0.5				
BROMOFORM		524.2	$\mu g/$	L 0.5	< 0.5	-	< 0.5				
BROMOMETHANE		524.2	$\mu g/3$	L = 0.5	< 0.5	-	< 0.5				
N-BUTYLBENZENE		524.2	$\mu g/$		< 0.5	-	< 0.5				
SEC-BUTYLBENZE	NE	524.2	$\mu g/$	L = 0.5	< 0.5	_	< 0.5				

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 X 05-3472 A Page: 1 of 4

0.5

10

0.5

0.5

0.5

0.5

0.5

0.5

< 0.5

< 10

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

 $\mu g/L$

 $\mu g/L$

 $\mu g/L$

 $_{\mu}\mathrm{g/L}$

 $\mu g/L$

 $\mu g/L$

 $_{\mu}\mathrm{g/L}$

 $\mu g/L$

524.2

524.2

524.2

524.2

524.2

524.2

524.2

524.2

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				A	analysis Resul	t
Component Analyzed	Method	Unit	PQL	EB-3-7/21/05 05-03472-1	MW-18-1 05-03472-2	MW-18-2 05-03472-3
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	_	< 0.5
1,2-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	_	< 0.5
1,3-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	_	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	_	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	_	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	_	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	_	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	_	< 0.5
1,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	_	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	_	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}^{\mu}\mathrm{g}/\mathrm{L}$	0.5	< 0.5	_	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	_	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	_	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	_	< 0.5
ETHYLBENZENE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	-	< 0.5
HEXACHLOROBUTADIENE	524.2		0.5	< 0.5	-	
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	< 0.5		< 0.5
METHYLENE CHLORIDE	524.2 524.2	$\mu g/L$	0.5	< 0.5	_	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2 524.2	$\mu g/L$	1	< 0.5	-	< 0.5
4-METHYL-2-PENTANONE (MIBK)	524.2 524.2	$\mu g/L$			-	<1
, ,		$\mu g/L$	10	<10	_	<10
NAPHTHALENE NAPHODYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
TOLUENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	-	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	-	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	-	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	0.3J

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 N 05-3472 N Page: 2 of 4

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analy	sis Result	
Component Analyzed	Method	Unit	PQL	MW-18-3 05-03472-4	MW-18-4 05-03472-5	MW-18-5 05-03472-6	TB-3-7/21/05 05-03472-7
Dilution Factor				1	1	1	1
1,2,3-TRICHLOROPROPANE	504.1	$_{\mu}\mathrm{g/L}$	0.005	< 0.005	0.037	< 0.005	-
VOLATILE ORGANIC COMPOUNDS		,					
Dilution Factor				1	1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	1.2	1.7	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.9	0.9	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 № 05-3472 ♥ Page: 3 of 4

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analy	sis Result	
Component Analyzed	${\bf Method}$	Unit	PQL	MW-18-3	MW-18-4	MW-18-5	TB-3-7/21/05
				05-03472-4	05-03472-5	05-03472-6	05-03472-7
HEXACHLOROBUTADIENE	524.2	$_{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	< 1	<1	< 1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	<10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}^{\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	0.4J	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	0.3J	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.4J	< 0.5	0.4J	< 0.5

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Applied P & CH Laboratories

Laboratory Director

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 & 05-3472 | Page: 4 of 4

J: Reported between PQL and MDL.

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to:

Battelle - Columbus Operations

Attention: David Conner

3990 Old Town Ave., Ste C102

San Diego CA 92110

Tel: (619)574-4482 Fax: (619)260-0882

APCL Analytical Report

Service ID #: 801-053510

Collected by: M. Mendoza

Collected on: 07/25/05

Received: 07/25/05

Extracted: N/A
Tested: 07/26/05

Reported: 07/27/05

Sample Description: Water from $4800~\mathrm{Oak}$ Grove Dr.

Project Description: G486090 JPL GW Mon-3Q05

Analysis of Water Samples

					Analysis Result	
Component Analyzed	Method	Unit	PQL	DUPE-1-3Q05 05-03510-1	MW-24-1 05-03510-2	MW-24-2 05-03510-3
Dilution Factor		•		10	10	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	670	683	79.1

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Respectfully submitted

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 № 05-3510 ↓ Page: 1 of 1

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498 **APCL Analytical Report**

Submitted to:

Battelle - Columbus Operations

Attention: David Conner

3990 Old Town Avenue, Suite C-205.

San Diego CA 92110

Tel: (619)726-7311 Fax: (619)260-0882

Service ID #: 801-053511

Received: 07/25/05

Collected by: MM

Extracted: N/A

Collected on: 07/25/05

Tested: 07/25-29/05 Reported: 08/01/05

Sample Description: Water

Project Description: G486090 JPL GW Mon-3Q05

Analysis of Water Samples

					Analysis Result
Component Analyzed		Method	Unit	PQL	MW-24-1
					05-03511-2
Dilution Factor					10
CHLORIDE		300.0	${ m mg/L}$	0.2	28.2
NITRATE AS N		300.0	${ m mg/L}$	0.04	1.7
NITRITE AS N		300.0	${ m mg/L}$	0.05	< 0.5
ORTHOPHOSPHATE	AS P	300.0	${ m mg/L}$	0.1	<1
SULFATE SO ₄		300.0	mg/L	0.5	40.7
			All Augustina and a second	Analy	ysis Result
Component Analyzed	Method	Unit	POL	EB-4-7/25/05	MW-24-3

		Analysis Resul					
Component Analyzed	Method	Unit	PQL	EB-4-7/25/05	MW-24-3		
				05-03511-1	05-03511-4		
Dilution Factor				1	1		
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	< 4		

			•		Analysis Result	
Component Analyzed	Method	Unit	PQL	EB-4-7/25/05	MW-24-1	MW-24-2
			05-03511-1	05-03511-2	05-03511-3	
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01
Dilution Factor				1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	0.36J	9.8	7.9

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 N 05-3511 Page: 1 of 5

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				1	Analysis Resul	t
Component Analyzed	Method	Unit	PQL	EB-4-7/25/05 05-03511-1	MW-24-1 05-03511-2	MW-24-2 05-03511-3
VOLATILE ORGANIC COMPOUNDS						
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	<10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	0.9	0.5J
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	1	0.4J
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 N 05-3511 Page: 2 of 5

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

						A	Analysis Resu	lt
Component Analyzed		Ì	Method	Unit	PQL	EB-4-7/25/05	MW-24-1	MW-24-2
						05-03511-1	05-03511-2	05-03511-3
P-ISOPROPYLTOLUEN	E		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORII	ЭE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ET	HER (MTBE)		524.2	$_{\mu}\mathrm{g/L}$	1	< 1	<1	< 1
4-METHYL-2-PENTANC	ONE (MIBK)		524.2	$_{\mu}\mathrm{g/L}$	10	< 10	<10	< 10
NAPHTHALENE			524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE			524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE			524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLORO	ETHANE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLORO	ETHANE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHEN	NE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	0.5J	< 0.5
TOLUENE			524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZ	ENE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZ	ENE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHA	NE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHA	NE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE			524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROM	IETHANE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROF	PANE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRI	FLUOROETHA	ANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZ	ZENE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZ	ZENE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE			524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE			524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE			524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	0.5	< 0.5
						A nalvei	s Result	
Component Analyzed	Method	Unit	PÇ)T,	MW-24-3	•		3-4-7/25/05
component rinary and	montou	O III V	- 4	,_	05-03511-			5-03511-6
CHROMIUM (VI)	7196	mg/L	0.0)1	< 0.01	< 0.0	01	_
Dilution Factor					1	1		1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1		6.4	5.0)	-

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 1 05-3511 Page: 3 of 5

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Res	ult
Component Analyzed	Method	Unit	PQL	MW-24-3 05-03511-4	MW-24-4 05-03511-5	TB-4-7/25/08 05-03511-6
VOLATILE ORGANIC COMPOUNDS				00-03011-4	00-03011-3	00-03011-0
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
BROMOBENZENE	524.2	$\mu g/L$ $\mu g/L$	0.5	< 0.5	_	< 0.5
BROMOCHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	_	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5	_	< 0.5
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	_	< 0.5
BROMOMETHANE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	_	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5	_	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	_	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	_	< 0.5
2-BUTANONE	524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	10	< 10	_	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	_	< 0.5
CHLOROBENZENE	524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5	_	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5	_	< 0.5
CHLOROETHANE	524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5	_	< 0.5
CHLOROFORM	524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5	_	< 0.5
CHLOROMETHANE	524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5	_	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	_	< 0.5
4-CHLOROTOLUENE	524.2		0.5	< 0.5	_	< 0.5
	524.2 524.2	μg/L	0.5	< 0.5	<u>-</u>	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2 524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
1,2-DIBROMOETHANE (EDB) DIBROMOMETHANE	524.2 524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5	_	< 0.5
	524.2 524.2		0.5	< 0.5	_	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	_	< 0.5
1,3-DICHLOROBENZENE		$_{\mu}\mathrm{g/L}$	0.5	< 0.5	_	< 0.5
1,4-DICHLOROBENZENE DICHLORODIFLUOROMETHANE	524.2 524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
	524.2 524.2	$_{\mu}\mathrm{g/L}$		< 0.5	-	< 0.5
1,1-DICHLOROETHANE		$\mu g/L$	0.5		-	
1,2-DICHLOROETHANE	524.2 524.2	$_{\mu \mathrm{g/L}}$	$0.5 \\ 0.5$	< 0.5	-	< 0.5 < 0.5
1,1-DICHLOROETHENE		$_{\mu}\mathrm{g/L}$		< 0.5	-	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5 < 0.5	-	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	-	< 0.5
1,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5		-	
1,3-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5 < 0.5
2,2-DICHLOROPROPANE	$524.2 \\ 524.2$	μg/L	0.5	< 0.5 < 0.5	<u>-</u> -	< 0.5
1,1-DICHLOROPROPENE		μg/L	0.5		<u>-</u>	
CIS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5 < 0.5	-	< 0.5 < 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5		-	< 0.5 < 0.5
ETHYLBENZENE HEXACHLOROBUTADIENE	524.2 524.2	μg/L	$0.5 \\ 0.5$	< 0.5 < 0.5	-	< 0.5
	524.2 524.2	μg/L	0.5	< 0.5	_	< 0.5
ISOPROPYLBENZENE (CUMENE)	J44.4	$_{\mu}\mathrm{g/L}$	U.J	< 0.0		<u> </u>

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 N 05-3511 Page: 4 of 5

13760 Magnolia Ave., Chino, CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

	7,74,75		Abt to .		Analysis Res	ult
Component Analyzed	Method	Unit	PQL	MW-24-3	MW-24-4	TB-4-7/25/05
				05-03511-4	05-03511-5	05-03511-6
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	<1	-	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	=	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 № 05-3511 b Page: 5 of 5

J: Reported between PQL and MDL.

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: Battelle

Attention: David Conner

3990 Old Town Ave., Suite C-205.

San Diego CA 92110

Tel: (619)574-4827 Fax: (619)260-0882

APCL Analytical Report

Service ID #: 801-053529 Collected by: M. Mendoza

Collected on: 07/26/05

Received: 07/26/05 Extracted: N/A Tested: 07/26-29/05

Reported: 08/11/05

Sample Description: Water

Project Description: G486090 JPL GW Mon-3Q05

Analysis of Water Samples

					Analysis Result			
Component Analyzed	Method	Unit	PQL	DUPE-2-3Q05 05-03529-1	EB-5-7/26/05 05-03529-2	MW-21-1 05-03529-3	MW-21-2 05-03529-4	
CHROMIUM (VI)	7196	mg/L	0.01	-	< 0.01	< 0.01	< 0.01	
Dilution Factor				1	1	1	1	
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	3.2J	< 4	3.6J	3.2J	
Dilution Factor				1	1	1	1	
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	-	0.36J	7.9	11.3	
VOLATILE ORGANIC COMPOUNDS								
Dilution Factor				1	1	1	1	
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5	
BROMOBENZENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5	< 0.5	
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5	
BROMODICHLOROMETHANE	524.2	$\mu g/L$	0.5	-	< 0.5	0.4J	< 0.5	
BROMOFORM	524.2	$_{\mu}^{\mathrm{g}/\mathrm{L}}$	0.5	-	< 0.5	< 0.5	< 0.5	
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5	
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	-	< 10	< 10	< 10	
N-BUTYLBENZENE	524.2	$\mu g/L$	0.5	_	< 0.5	< 0.5	< 0.5	
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5	
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5	
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5	
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5	
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5	
CHLOROETHANE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5	< 0.5	
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	0.5	0.5J	
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5	
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5	
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5	
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5	
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5	
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5	< 0.5	
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5	
1,3-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5	< 0.5	
1,4-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5	< 0.5	
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	-	< 0.5	0.5J	< 0.5	
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5	< 0.5	
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	_	< 0.5	< 0.5	0.4J	

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 ℵ 05-3529 ឯ Page: 1 of 4

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				Analysis Result					
Component Analyzed	Method	Unit	PQL	DUPE-2-3Q05	EB-5-7/26/05	MW-21-1	MW-21-2		
				05-03529-1	05-03529-2	05-03529-3	05-03529-		
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	=	< 0.5	< 0.5	< 0.5		
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	•	< 0.5	< 0.5	< 0.5		
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	_	<1	< 1	< 1		
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	_	< 10	< 10	< 10		
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	2.6		
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	0.8	< 0.5		
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5	< 0.5		

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 № 05-3529 □ Page: 2 of 4

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analy	sis Result	
Component Analyzed	Method	Unit	PQL	MW-21-3 05-03529-5	MW-21-4 05-03529-6	MW-21-5 05-03529-7	TB-5-7/26/05 05-03529-8
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01	-
Dilution Factor				1	1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	3.0J	2.0J	3.3J	-
Dilution Factor				1	1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	12.9	9.4	9.2	-
VOLATILE ORGANIC COMPOUNDS							
Dilution Factor				1	1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.4J	0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	1.1	2.7	3.6	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}^{\cdot}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	0.8	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 № 05-3529 \$\bar{1}\$ Page: 3 of 4

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analy	sis Result	
Component Analyzed	Method	Unit	PQL	MW-21-3	MW-21-4	MW-21-5	TB-5-7/26/05
				05-03529-5	05-03529-6	05-03529-7	05-03529-8
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	<1	< 1	< 1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	3.1	2.6	4.2	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.9	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.4J	< 0.5	0.3J	< 0.5

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Laboratory Director
Applied P & CH Laboratories

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 № 05-3529 \$\bar{1}\$ Page: 4 of 4

J: Reported between PQL and MDL.

13760 Magnolia Ave., Chino, CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: Battelle

Attention: David Conner

3990 Old Town Ave, Ste C-102.

San Diego CA 92110

Tel: (619)574-4821 Fax: (619)260-0882

APCL Analytical Report

Service ID #: 801-053541 Collected by: M. Mendoza

Collected on: 07/27/05

Received: 07/27/05 Extracted: 07/28/05 Tested: 07/27-29/05

Reported: 08/09/05

Sample Description: Water from 4800 Oak Grove Dr. Project Description: G486090 JPL GW Mon-3Q05

Analysis of Water Samples

					Analysis Result						
Component Analyzed	Method	Unit	PQL	EB-6-7/27/05 05-03541-1	MW-3-2 05-03541-3	MW-3-3 05-03541-4	MW-3-4 05-03541-5				
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01	< 0.01				
Dilution Factor				1	1	1	1				
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	32.2	< 4	< 4				
Dilution Factor				1	1	1	1				
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	0.24J	9.8	6.9	6.9				
VOLATILE ORGANIC COMPOUNDS											
Dilution Factor				1	1	1	1				
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10				
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
CHLOROFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
4-CHLOROTOLUENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
1,2-DIBROMOETHANE (EDB)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
1,2-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
1,3-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
1,1-DICHLOROETHANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
1,2-DICHLOROETHANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
1,1-DICHLOROETHENE	524.2	$_{\mu}^{\mu}\mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 N 05-3541 h Page: 1 of 4

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis	s Result	
Component Analyzed	Method	Unit	PQL	EB-6-7/27/05	MW-3-2	MW-3-3	MW-3-4
				05-03541-1	05-03541-3	05-03541-4	05-03541-5
CIS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}^{'}$ g/L		< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$		< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	< 1	< 1	<1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}^{'}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	0.4J	0.4J	0.6
Dilution Factor				1	1	1	1
N-NITROSODIMETHYLAMINE (NDMA)	GCMS/MS,1625	$_{\mu}\mathrm{g/L}$	0.002	-	0.0076	< 0.002	0.002J

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 N 05-3541 h Page: 2 of 4

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Component Analyzed	Method	Unit	PQL	Analysis Result TB-6-7/27/05 05-03541-7
VOLATILE ORGANIC COMPOUNDS				
Dilution Factor				1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu\mathrm{g/L}}$	0.5	< 0.5
BROMOFORM	524.2	$_{\mu\mathrm{g}}/\mathrm{L}$	0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu\mathrm{g/L}}$	0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}^{ m g/L}$	0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$\mu \mathrm{g}/\mathrm{L}$	0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 N 05-3541 Page: 3 of 4

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Component Analyzed	Method	Unit	PQL	Analysis Result TB-6-7/27/05 05-03541-7
METHYLENE CHLORIDE	524.2	$_{\mu\mathrm{g/L}}$	0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10
NAPHTHALENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5
STYRENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5

The second secon		indext-noisen		Analys	is Result
Component Analyzed	Method	Unit	PQL	MW-3-1 05-03541-2	MW-3-5 05-03541-6
Dilution Factor N-NITROSODIMETHYLAMINE (NDMA)	GCMS/MS,1625	μg/L	0.002	1 0.0005 J	1 < 0.002

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Laboratory Director Applied P & CH Laboratories

Respectfully submitted

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 N 05-3541 h Page: 4 of 4

J: Reported between PQL and MDL.

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to:

Battelle

Attention: David Conner

3990 Old Town Ave, Suite C-205.

San Diego CA 92110

Tel: (619)574-4827 Fax: (619)260-0882

APCL Analytical Report

Service ID #: 801-053553

Collected by: MM

Collected on: 07/28/05

Received: 07/28/05 Extracted: 07/29/05

Γested: 07/28-08/09/05

Reported: 08/11/05

Sample Description: Water

Project Description: G486090 JPL GW Mon-3Q05

Analysis of Water Samples

				Analysis Result					
Component Analyzed	Method	Unit	PQL	EB-7-7/28/05 05-03553-1	MW-12-1 05-03553-2	MW-12-2 05-03553-3			
Dilution Factor	· · · · · ·			1	1	1			
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	< 4	2.3J			
VOLATILE ORGANIC COMPOUNDS		·							
Dilution Factor				1	1	1			
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10			
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	0.6			
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
4-CHLOROTOLUENE	524.2	$_{\mu}^{'}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 № 05-3553 ↓ Page: 1 of 5

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				A	Analysis Resul	t
Component Analyzed	Method	Unit	PQL	EB-7-7/28/05	MW-12-1	MW-12-2
				05-03553-1	05-03553-2	05-03553-3
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	2.0	1.2	1.4
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	< 1	< 1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 № 05-3553 \$\(\text{Page: 2 of 5} \)

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analy	sis Result	
Component Analyzed	Method	Unit	PQL	MW-12-3 05-03553-4	MW-12-4 05-03553-5	MW-12-5 05-03553-6	TB-7-7/28/05 05-03553-7
Dilution Factor				1	1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	2.9J	3.6J	2.6J	-
VOLATILE ORGANIC COMPOUNDS		F-01					
Dilution Factor				1	1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	2.0	2.1	1.2	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.8	0.5J	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 X 05-3553 A Page: 3 of 5

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Anal	ysis Result	
Component Analyzed	Method	l Unit	PQL	MW-12-3	MW-12-4	MW-12-5	TB-7-7/28/0
				05-03553-4	1 05-03553-5	05-03553-6	05-03553-7
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	1.3	1.3	1.4	1.4
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	< 1	<1	<1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
					Analysis		
Component Analyzed Method	Unit	PQL		' '	MW-12-1	MW-12-2	MW-12-3
			05-03	3553-1 0	5-03553-2	05-03553-3	05-03553-4
CHROMIUM (VI) 7196	mg/L	0.01	<(0.01	< 0.01	< 0.01	< 0.01
Dilution Factor				1	1	1	1
CHROMIUM 200.8	$_{\mu}\mathrm{g/L}$	1	0.	48J	10.1	10.2	6.7
Dilution Factor				1	1	1	1
1,2,3-TRICHLOROPROPANE 504.1	$_{\mu}\mathrm{g/L}$	0.005	-		< 0.005	< 0.005	0.018

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 № 05-3553 \$\text{p}\$ Page: 4 of 5

13760 Magnolia Ave., Chino, CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Component Analyzed		Unit		Analysis Result		
	Method		PQL	MW-12-4	MW-12-5	
				05-03553-5	05-03553-6	
Dilution Factor				1	1	
1,2,3-TRICHLOROPROPANE	504.1	$_{\mu}\mathrm{g/L}$	0.005	0.023	0.014	

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Respectfully submitted,

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 X 05-3553 A Page: 5 of 5

J: Reported between PQL and MDL.

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: Battelle

Attention: David Conner

3990 Old Town Ave., Suite C-205.

San Diego CA 92110

Tel: (619)574-4827 Fax: (619)260-0882

APCL Analytical Report

Service ID #: 801-053591

Collected by: MM

Collected on: 08/01/05

Received: 08/01/05 Extracted: N/A

08/01-09/05 Tested: Reported: 08/11/05

Sample Description: Water

Project Description: G486090 JPL GW Mon-3Q05

Analysis of Water Samples

Component Analyzed	Method	Unit	PQL	EB-8-8/1/05 05-03591-1	Analysis Result MW-20-1 05-03591-2	t MW-20-2 05-03591-3
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01
Dilution Factor				1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	2.2J	< 4
Dilution Factor				1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	0.64J	7.0	6.3
VOLATILE ORGANIC COMPOUNDS		,				
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$\mu g/L$	10	5J	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

CI-1665 D006 X 05-3591 b Page: 1 of 4 CADHS ELAP No.: 1431 NELAP No.:02114CA

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				Analysis Result			
Component Analyzed	Method	Unit	PQL	EB-8-8/1/05 05-03591-1	MW-20-1 05-03591-2	MW-20-2 05-03591-3	
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	1.8	1.3	1.3	
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	<1	<1	< 1	
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	0.5J	

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 № 05-3591 ♥ Page: 2 of 4

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analys	sis Result	
Component Analyzed	${\bf Method}$	Unit	PQL	MW-20-3	MW-20-4	MW-20-5	TB-8-8/1/05
				05-03591-4	05-03591-5	05-03591-6	05-03591-7
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01	-
Dilution Factor				1	1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	< 4	< 4	-
Dilution Factor				1	1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	11.6	5.8	4.7	-
VOLATILE ORGANIC COMPOUNDS							
Dilution Factor				1	1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 X 05-3591 A Page: 3 of 4

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

omponent Analyzed M	Method 524.2	Unit	PQL	MW-20-3	MW-20-4	MW-20-5	mn o o /1 /or
CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE	524.2			05-03591-4	05-03591-5		TB-8-8/1/05 05-03591-7
CIS-1,3-DICHLOROPROPENE		$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	1.3	1.3	1.3	1.3
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	<1	< 1	< 1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 X 05-3591 A Page: 4 of 4

J: Reported between PQL and MDL.

13760 Magnolia Ave., Chino, CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: Battelle

Attention: David Conner

3990 Old Town Ave, Suite C-205

San Diego CA 92110

Tel: (619)726-0821 Fax: (619)260-0882

APCL Analytical Report

Service ID #: 801-053600

Collected by: MM Collected on: 08/02/05 Received: 08/02/05 Extracted: N/A Tested: 08/02-09/05

Reported: 08/11/05

Sample Description: Water

Project Description: G486090 JPL GW Mon-3Q05

Analysis of Water Samples

Component Analyzed	Method	Unit	PQL	Analysis Result MW-11-1 05-03600-7
ALKALINITY	310.1	mg/L	2	206
BICARBONATE	SM2320B	mg/L	2	206
CARBONATE	SM2320B	mg/L	2	< 2
РН	9040	pH unit	0.01	7.61
SOLIDS, TOTAL DISSOLVED (TDS)	160.1	${\sf mg/L}$	10	344
Dilution Factor		σ,		4
CHLORIDE	300.0	mg/L	0.2	24.7
NITRATE N	300.0	mg/L	0.04	1.2
SULFATE	300.0	mg/L	0.5	51.5

					Analysis	Result	
Component Analyzed	Method	Unit	PQL	DUPE-3-3Q05 05-03600-1	DUPE-4-3Q05 05-03600-2	EB-9-8/2/05 05-03600-3	MW-4-1 05-03600-4
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dilution Factor				1	1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	5.7	< 4	< 4	< 4
Dilution Factor		•		1	1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	11.7	7.8	1.5	4.9
VOLATILE ORGANIC COMPOUND	os	•					
Dilution Factor				1	1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$\mu g/L$	10	< 10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 № 05-3600 ↓ Page: 1 of 6

13760 Magnolia Ave., Chino, CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Component Analyzed	Method	Unit	PQL	DUPE-3-3Q05		EB-9-8/2/05	MW-4-1
2-CHLOROTOLUENE	F04.0	/T	0.5	05-03600-1	05-03600-2	05-03600-3	
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	1.2	1.2	1.4	1.2
METHYL-T-BUTYL ETHER (MTBE)	524.2	$\mu g/L$	1	< 1	< 1	< 1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$\mu g/L$	10	< 10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE		$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.4J	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}$ g/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE		$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE		$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE		$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE		$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE		$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 N 05-3600 h Page: 2 of 6

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analys	is Result	
Component Analyzed	Method	Unit	PQL	MW-4-2	MW-4-3	MW-11-1	MW-11-2
				05-03600-5	05-03600-6	05-03600-7	05-03600-
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dilution Factor				1	1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	6.1	< 4	< 4	< 4
Dilution Factor				1	1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	9.0	0.67J	6.7	6.9
VOLATILE ORGANIC COMPOUNDS							
Dilution Factor				1	1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}$ g/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analys	is Result	
Component Analyzed	Method	Unit	PQL	MW-4-2	MW-4-3	MW-11-1	MW-11-2
				05-03600-5	05-03600-6	05-03600-7	05-03600-
CIS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	1.9	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	1.2	1.2	1.2	1.2
METHYL-T-BUTYL ETHER (MTBE)	524.2	$\mu g/L$	1	<1	<1	< 1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
NAPHTHALENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	0.4J	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.4J	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}^{\rm g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	0.6	0.5	< 0.5

					Analysis Result	t
Component Analyzed	Method	Unit	PQL	MW-11-3 05-03600-9	MW-11-4 05-03600-10	TB-9-8/2/05 05-03600-11
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	-
Dilution Factor				1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	< 4	-
Dilution Factor				1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	5.0	2.7	-

CADHS ELAP No.: 1431 NELAP No.:02114CA

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Resu	lt
Component Analyzed	Method	Unit	PQL	MW-11-3 05-03600-9	MW-11-4 05-03600-10	TB-9-8/2/0 05-03600-11
VOLATILE ORGANIC COMPOUNDS						
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	10	< 10	< 10	<10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$\mu g/L$	0.5	< 0.5	<0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431

NELAP No.:02114CA

Cl-1665 D006 ₹ 05-3600 \$

Page: 5 of 6

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Resu	ılt
Component Analyzed	Method	Unit	PQL	MW-11-3 05-03600-9	MW-11-4 05-03600-10	TB-9-8/2/0 05-03600-1
P-ISOPROPYLTOLUENE	524.2	$_{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	1.2	1.2	1.2
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	<1	< 1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.6	< 0.5	< 0.5

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Respectfully submitte

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 № 05-3600 ₽ Page: 6 of 6

J: Reported between PQL and MDL.

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to:

Battelle

Attention: David Conner 3990 Old Town Ave., Ste C-102.

San Diego CA 92110

Tel: (619)574-4821 Fax: (619)260-0882

APCL Analytical Report

Service ID #: 801-053618

Collected by: MM

Collected on: 08/03/05

Received: 08/03/05 Extracted: N/A

Tested: 08/03-12/05

Reported: 08/15/05

Sample Description: Water from 4800 Oak Grove Dr. Project Description: G486090 JPL GW Mon-3Q05

Analysis of Water Samples

					Analysis	Result	
Component Analyzed	Method	Unit	PQL	DUPE-5-3Q05	EB-10-8/3/05	MW-14-1	MW-14-2
				05-03618-1	05-03618-2	05-03618-3	05-03618-4
Dilution Factor				1	1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	1.6J	< 4	1.9J	3.4J
VOLATILE ORGANIC COMPOUNDS							
Dilution Factor				1	1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:01114CA Cl-1665 D006 X 05-3618 A Page: 1 of 7

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

	-				Analysis	Result	
Component Analyzed	Method	Unit	PQL	DUPE-5-3Q05	EB-10-8/3/05	MW-14-1	MW-14-2
				05-03618-1	05-03618-2	05-03618-3	05-03618-4
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	2.1
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	1.2	1.2	1.2	1.2
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	<1	< 1	< 1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	4.0
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:01114CA CI-1665 D006 1 05-3618 Page: 2 of 7

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analys	is Result	
Component Analyzed	Method	Unit	PQL	MW-14-3	MW-14-4	MW-14-5	MW-22-1
				05-03618-5	05-03618-6	05-03618-7	05-03618-8
Dilution Factor				1	1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	4.9	3.1J	< 4	2.3J
VOLATILE ORGANIC COMPOUNDS							
Dilution Factor				1	1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.3J	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:01114CA CI-1665 D006 № 05-3618 № Page: 3 of 7

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analys	is Result	
Component Analyzed	Method	Unit	PQL	MW-14-3	MW-14-4	MW-14-5	MW-22-1
				05-03618-5	05-03618-6	05-03618-7	05-03618-8
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	1.2	1.2	1.2	1.2
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	<1	<1	< 1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	1	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	E 524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
	# % 			1100000000			
	.	DO:	_		Analysis Re		
Component Analyzed Method U	Jnit	PQL		W-22-2 03618-9	MW-22-3 05-03618-10		0-8/3/05 618-11
Dilution Factor				1	1		1
PERCHLORATE 314.0 μ	g/L	4		2.0J	2.2J		-

CADHS ELAP No.: 1431 NELAP No.:01114CA Cl-1665 D006 № 05-3618 ឯ Page: 4 of 7

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Resu	ılt
Component Analyzed	Method	Unit	PQL	MW-22-2	MW-22-3	TB-10-8/3/05
				05-03618-9	05-03618-10	05-03618-11
VOLATILE ORGANIC COMPOUNDS						
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:01114CA CI-1665 D006 X 05-3618 A Page: 5 of 7

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Res	ult
Component Analyzed	Method	Unit	PQL	MW-22-2	MW-22-3	TB-10-8/3/0
				05-03618-9	05-03618-10	05-03618-11
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	1.2	1.2	1.2
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	< 1	< 1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	<10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

					Analysis Result			
Component Analyzed	Method	Unit	PQL	DUPE-5-3Q05	EB-10-8/3/05	MW-14-1	MW-14-2	
				05-03618-1	05-03618-2	05-03618-3	05-03618-4	
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Dilution Factor				1	1	1	1	
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	7.7	1.5	11.5	10.4	

CADHS ELAP No.: 1431 NELAP No.:01114CA C1-1665 D006 № 05-3618 ឯ Page: 6 of 7

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				Analysis Result						
Component Analyzed	Method	Unit	PQL	MW-14-3	MW-22-1	MW-22-2	MW-22-3			
and the second s				05-03618-5	05-03618-8	05-03618-9	05-03618-10			
CHROMIUM (VI)	7196	$\mathrm{mg/L}$	0.01	< 0.01	< 0.01	< 0.01	< 0.01			
Dilution Factor	000.0	_ /T	1	1 9.6	1	1 7.9	1 0 n			
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	8.6	9.6	7.2	8.2			

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Respectfully submit

Laboratory Director

Applied P & CH Laboratories

CADHS EŁAP No.: 1431 NELAP No.:01114CA Cl-1665 D006 № 05-3618 ↓ Page: 7 of 7

J: Reported between PQL and MDL.

13760 Magnolia Ave., Chino, CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: Battelle

Attention: David Conner 3990 Old Town Ave., Ste C102.

San Diego CA 92110

Tel: (619)574-4821 Fax: (619)260-0882

APCL Analytical Report

Service ID #: 801-053638

Collected by:

Received: 08/04/05 Extracted: N/A

Collected on: 08/04/05

Tested: 08/04-10/05

Project Description: G486090 JPL GW Mon-3Q05

Analysis of Water Samples

Component Analyzed	Method	Unit	PQL	DUPE-6-3Q05 05-03638-1	Analysis Result EB-11-8/4/05 05-03638-2	MW-23-1 05-03638-3
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01
Dilution Factor				1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	< 4	2.6J
Dilution Factor		•		1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	15.0	2.0	0.91J
VOLATILE ORGANIC COMPOUNDS		,				
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$\mu g/L$	10	< 10	<10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{ m \mu g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	0.3J
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 N 05-3638 h Page: 1 of 6

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				1	Analysis Result	
Component Analyzed	Method	Unit	PQL	DUPE-6-3Q05	EB-11-8/4/05	MW-23-1
				05-03638-1	05-03638-2	05-03638-3
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	1.4	1.3	1.3
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	<1	<1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	0.8
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 № 05-3638 ♥ Page: 2 of 6

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Resu	lt
Component Analyzed	Method	Unit	PQL	MW-23-2 05-03638-4	MW-23-3 05-03638-5	MW-23-4 05-03638-6
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01
Dilution Factor				1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	2.9J	0.89J	-
Dilution Factor		μ.σ.		1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	10.7	10.6	8.4
VOLATILE ORGANIC COMPOUNDS		7-01				
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
BROMODICHLOROMETHANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	_
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
N-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	-
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
TERT-BUTYLBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	-
2-BUTANONE	524.2	$_{\mu}^{\mathrm{g}/\mathrm{L}}$	10	< 10	< 10	-
CARBON TETRACHLORIDE	524.2	$_{\mu}^{\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	_
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	_
CHLORODIBROMOMETHANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	_
CHLOROETHANE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	_
CHLOROFORM	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	_
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	_
2-CHLOROTOLUENE	524.2	μg/L	0.5	< 0.5	< 0.5	_
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	_
1,2-DIBROMOETHANE (EDB)	524.2	μg/L	0.5	< 0.5	< 0.5	_
DIBROMOMETHANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	_
1,2-DICHLOROBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	_
1,3-DICHLOROBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	_
1,4-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	_
DICHLORODIFLUOROMETHANE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	_
1,1-DICHLOROETHANE	524.2	$_{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	_
1,2-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	-
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	-
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	-
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	-
4-METHYL-2-PENTANONE (MIBK)	524.2	$\mu g/L$	10	< 10	< 10	-
1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	-
1,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	_
1,3-DICHLOROPROPANE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	_

CADHS EŁAP No.: 1431 NELAP No.:02114CA CI-1665 D006 № 05-3638 b Page: 3 of 6

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Resu	ılt
Component Analyzed	Method	Unit	PQL	MW-23-2 05-03638-4	MW-23-3 05-03638-5	MW-23-4 05-03638-6
2,2-DICHLOROPROPANE	524.2	$_{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	-
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	1.3	1.3	-
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	< 1	< 1	-
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	_
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	_
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	_
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	_
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
1,1,2-TRICHLOROETHANE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	-
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	_
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	_
1,2,3-TRICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	_
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}^{\mu}g/L$	0.5	< 0.5	< 0.5	_
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
1,3,5-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	-
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	-
M/P-XYLENE	524.2	$_{\mu}^{\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	-

					Analysis Resu	lt
Component Analyzed	Method	Unit	PQL	MW-26-1 05-03638-7	MW-26-2 05-03638-8	TB-11-8/4/05 05-03638-9
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	-
Dilution Factor				1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	< 4	-
Dilution Factor				1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	13.2	12.7	-

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 № 05-3638 は Page: 4 of 6

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Res	ult
Component Analyzed	Method	Unit	PQL	MW-26-1 05-03638-7	MW-26-2 05-03638-8	TB-11-8/4/08 05-03638-9
VOLATILE ORGANIC COMPOUNDS					· · · · · · · · · · · · · · · · · · ·	
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 № 05-3638 h Page: 5 of 6

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Res	ult
Component Analyzed	Method	Unit	PQL	MW-26-1	MW-26-2	TB-11-8/4/05
				05-03638-7	05-03638-8	05-03638-9
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	1.4	1.4	1.4
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	< 1	<1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Dominic Hau

Respectfully submitted

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 № 05-3638 ↓ Page: 6 of 6

J: Reported between PQL and MDL.

13760 Magnolia Ave., Chino, CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: Battelle

Attention: David Conner

3990 old Town Avenue, Suite C-205

San Diego CA 92110

Tel: (619)726-7311 Fax: (619)260-0882

APCL Analytical Report

Service ID #: 801-053685 Collected by: MM

Collected on: 08/09/05

Received: 08/09/05 Extracted: N/A Tested: 08/09-22/05 Reported: 08/26/05

Sample Description: Water from 4800 Oak Grove Dr., Pasadena. Project Description: G486090 JPL GW Mon-3Q05

Analysis of Water Samples

				Analys	is Result
Component Analyzed	Method	Unit	PQL	MW-7 05-03685-1	MW-13 05-03685-2
ALKALINITY	310.1	mg/L	2	168	138
BICARBONATE	310.1	mg/L	2	168	138
CARBONATE	310.1	$_{ m mg/L}$	2	< 2	< 2
РН	150.1	pH unit	0.01	7.26	7.13
CHROMIUM (VI)	7196	$_{ m mg/L}$	0.01	< 0.01	0.024
SOLIDS, TOTAL DISSOLVED (TDS) Dilution Factor	160.1	m mg/L	10	327 1	$\begin{array}{c} 434 \\ 10 \end{array}$
PERCHLORATE Dilution Factor	314.0	$_{\mu}\mathrm{g/L}$	4	$\begin{array}{c} 87.1 \\ 5 \end{array}$	$^{402}_{8}$
CHLORIDE	300.0	mg/L	0.2	29.7	39.7
NITRATE AS N	300.0	mg/L	0.04	1.2	8.7
SULFATE Dilution Factor	300.0	mg/L	0.5	$\begin{array}{c} 46.7 \\ 1 \end{array}$	$78.2 \\ 1$
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	9.1	31.7

					Analysis Res	ult
Component Analyzed	Method	Unit	PQL	MW-7 05-03685-1	MW-13 05-03685-2	TB-12-8/9/05 05-03685-3
VOLATILE ORGANIC COMPOUNDS						
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	0.5J	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	0.7	1.4	< 0.5
CHLOROBENZENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	0.3J	< 0.5
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	4.1	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}^{\prime}\mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}^{\mu g/L}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 № 05-3685 ₽ Page: 1 of 2

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Res	
Component Analyzed	Method	Unit	PQL	MW-7 05-03685-1	MW-13 05-03685-2	TB-12-8/9/08 05-03685-3
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}^{\mu}\mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}^{\mu}\mathrm{g}/\mathrm{L}$	0.5	1.2	1.1	1.2
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}^{\mu}\mathrm{g}/\mathrm{L}$	1	< 1	< 1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}^{\mu}\mathrm{g}/\mathrm{L}$	10	< 10	<10	<10
NAPHTHALENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}^{\mu}\mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}^{\mu}\mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}^{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	14.1	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	1.3	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}^{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUORO	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit "-": Analysis is not required.

 $\ensuremath{\mathrm{N.D.:}}$ Not Detected or less than the practical quantitation limit.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Laboratory Director
Applied P & CH Laboratories

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 № 05-3685 ₽ Page: 2 of 2

13760 Magnolia Ave., Chino, CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: Battelle

Attention: David Coner

3990 Old Town Avenue, Suite C-205

San Diego CA 92110

Tel: (619)726-7311 Fax: (619)260-0882

APCL Analytical Report

Service ID #: 801-053697

Collected by: Collected on: 08/10/05 Received: 08/10/05 Extracted: N/A

Tested: 08/10-22/05 Reported: 08/26/05

Sample Description: Water from 4800 Oak Grove Dr. Project Description: G486090 JPL GW Mon-3Q05

Analysis of Water Samples

				Analysis Result		
Component Analyzed	Method	Unit	PQL	MW-8 05-03697-2	MW-16 05-03697-4	
ALKALINITY	310.1	mg/L	2	158	96.9	
BICARBONATE	310.1	mg/L	2	158	96.9	
CARBONATE	310.1	mg/L	2	< 2	< 2	
PH	150.1	pH unit	0.01	6.81	6.92	
SOLIDS, TOTAL DISSOLVED (TDS)	160.1	mg/L	10	251	368	
Dilution Factor				2.5	8	
CHLORIDE	300.0	mg/L	0.2	13.0	26.6	
NITRATE N	300.0	mg/L	0.04	1.2	15.4	
SULFATE	300.0	mg/L	0.5	39.2	37.5	

				Analysis	Result
Component Analyzed	Method	Unit	PQL	DUPE-7-3Q05 05-03697-1	MW-8 05-03697-2
CHROMIUM (VI)	7196	mg/L	0.01	0.014	< 0.01
Dilution Factor				2	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	110	1.4J
Dilution Factor		·		1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	24.6	9.1
VOLATILE ORGANIC COMPOUNDS					
Dilution Factor				1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5
BROMOFORM	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$\mu g/L$	10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	1.1	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 № 05-3697 ♥ Page: 1 of 4

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				Analysis	Result
Component Analyzed	Method	Unit	PQL	DUPE-7-3Q05 05-03697-1	MW-8 05-03697-2
2-CHLOROTOLUENE	524.2	$_{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}^{\mu}g/L$	0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}^{\mu g/L}$	0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}^{\mu g/L}$	0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}^{\mu}g/L$	0.5	1.2	1.2
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	1	<1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5
1,1,2-TETRACHLOROETHANE 1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}^{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
TOLUENE	524.2	μg/L μg/L	0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	5.1	< 0.5
TRICHLOROETHENE TRICHLOROFLUOROMETHANE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5
	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE 112TRICHLORO-122TRIFLUOROETHANE	524.2 524.2	$\mu g/L$ $\mu g/L$	0.5	< 0.5	< 0.5
	524.2 524.2		0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2 524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2 524.2		0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2 524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5
O-XYLENE M/P-XYLENE	524.2 524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 1 05-3697 Page: 2 of 4

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Res	sult
Component Analyzed	Method	Unit	PQL	MW-10 05-03697-3	MW-16 05-03697-4	TB-13-8/10/05 05-03697-5
CHROMIUM (VI)	7196	mg/L	0.01	0.014	< 0.01	_
Dilution Factor				2	200	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	108	13,000	-
Dilution Factor		·		1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	25.4	38.0	-
VOLATILE ORGANIC COMPOUNDS						
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.5	11.2	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	1.2	9.7	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	2.6	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 N 05-3697 D Page: 3 of 4

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

			1,-1,-1,-1		Analysis Re	sult
Component Analyzed	Method	Unit	PQL	MW-10 05-03697-3	MW-16 05-03697-4	TB-13-8/10/05 05-03697-5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	1.2	< 0.5	1.3
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	< 1	< 1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	5.3	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	4.9	2.6	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit. CR

CRDL: Contract Required Detection Limit

 $N.D.:\ Not\ Detected\ or\ less\ than\ the\ practical\ quantitation\ limit.$

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 № 05-3697 ឯ Page: 4 of 4

J: Reported between PQL and MDL.

13760 Magnolia Ave., Chino, CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: Battelle

Attention: David Conner

3990 Old Town Avenue, Suite C-205.

San Diego CA 92110

Tel: (619)726-7311 Fax: (619)260-0882

APCL Analytical Report

Service ID #: 801-053707

Collected by: MM

Collected on: 08/11/05

Received: 08/11/05 Extracted: N/A

Tested: 08/12-22/05 Reported: 08/25/05

Sample Description: Water

Project Description: G486090 JPL GW Mon-3Q05

Analysis of Water Samples

					Analys	is Result	
Component Analyzed	Method	Unit	PQL	DUPE-8-3Q05 05-03707-1	MW-5 05-03707-3	MW-6 05-03707-4	TB-14-8/11/05 05-03707-6
Dilution Factor				1	1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	< 4	3.0J	-
VOLATILE ORGANIC COMPOUNDS							
Dilution Factor				1	1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0,5	< 0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	0.7	< 0.5
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 № 05-3707 b Page: 1 of 3

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analys	sis Result	
Component Analyzed	Method	Unit	PQL	DUPE-8-3Q05	MW-5	MW-6	TB-14-8/11/0
				05-03707-1	05-03707-3	05-03707-4	05-03707-6
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	1.2	1.2	1.2	1.3
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	< 1	<1	<1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	0.9	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}^{ m g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	1.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 № 05-3707 b Page: 2 of 3

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				Analys	is Result
Component Analyzed	Method	Unit	PQL	DUPE-8-3Q05 05-03707-1	DUPE-9-3Q05 05-03707-2
CHROMIUM (VI) Dilution Factor	7196	mg/L	0.01	< 0.01 1	< 0.01
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	6.2	6.9

					Analysis Result	i
Component Analyzed	Method	Unit	PQL	MW-5 05-03707-3	MW-6 05-03707-4	MW-15 05-03707-5
CHROMIUM (VI) Dilution Factor	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01
CHROMIUM	200.8	$_{\mu \mathrm{g/L}}$	1	6.4	13.8	9.9

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Respectfully submit

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 № 05-3707 は Page: 3 of 3

J: Reported between PQL and MDL.

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to:

Battelle

Attention: David Conner

3990 Old Town Ave., Ste C102.

San Diego CA 92110

Tel: (619)726-7311 Fax: (619)260-0882

APCL Analytical Report

Service ID #: 801-053729

Collected by: M. Mendoza

Collected on: 08/15/05

Received: 08/15/05

Extracted: N/A Tested: 08/16/05

Reported: 08/16/05

Sample Description: Water from 9800 Oak Grove Dr.

Project Description: G486090 JPL GW Mon-3Q05

Analysis of Water Samples

				Analysis Result
Component Analyzed	Method	Unit	PQL	MW-17-4
10 Maria				05-03729-1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Respectfully submitte

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94

J: Reported between PQL and MDL.

[†] All results are reported on dry basis for soil samples.

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: Battelle

Attention: David Conner

3990 Old Town Avenue, Suite C-205.

San Diego CA 92110

Tel: (619)726-7311 Fax: (619)260-0882

APCL Analytical Report

Service ID #: 801-053730 Collected by: M. Mendoza

Collected on: 08/15/05

Received: 08/15/05 Extracted: N/A

Tested: 08/15-22/05 Reported: 08/25/05

Sample Description: Water from 4800 Oak Grove Dr. Pasadena

Project Description: G486090 JPL GW Mon-3Q05

Analysis of Water Samples

					Analysis	Result	
Component Analyzed	Method	Unit	PQL	EB-12-8/15/05 05-03730-1	MW-17-2 05-03730-2	MW-17-3 05-03730-3	SB-1-3Q05 05-03730-5
Dilution Factor			, , , , , , , , , , , , , , , , , , , ,	1	1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	9.7	76.4	< 4

				A	nalysis Result	
Component Analyzed	Method	Unit	PQL	EB-12-8/15/05 05-03730-1	MW-17-2 05-03730-2	MW-17-3 05-03730-3
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01
Dilution Factor				1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	1.9	9.6	10.8
VOLATILE ORGANIC COMPOUNDS		,				
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	8J	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	0.6	3.7
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	0.3J	1.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 № 05-3730 ឯ Page: 1 of 4

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				A	nalysis Result	;
Component Analyzed	Method	Unit	PQL	EB-12-8/15/05	MW-17-2	MW-17-3
				05-03730-1	05-03730-2	05-03730-3
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}^{'}g/L$	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	1.4	1.2	1.2
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	< 1	<1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	1.4	1.8
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	0.4J

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 № 05-3730 b Page: 2 of 4

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				24.05%	Analysis Res	enlt
Component Analyzed	Method	Unit	PQL	MW-17-4 05-03730-4	SB-1-3Q05 05-03730-5	TB-15-8/15/05 05-03730-6
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	-
Dilution Factor				1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	6.1	2.3	_
VOLATILE ORGANIC COMPOUNDS						
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	4J	<10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 № 05-3730 h Page: 3 of 4

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Re	sult
Component Analyzed	Method	Unit	PQL	MW-17-4 05-03730-4	SB-1-3Q05 05-03730-5	TB-15-8/15/05 05-03730-6
ETHYLBENZENE	524.2	$_{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}^{'}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	1.2	1.4	1.3
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	<1	<1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.4J	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

PQL: Practical Quantitation Limit.

 $\label{eq:mdl} \mbox{MDL: Method Detection Limit.}$

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 № 05-3730 ឯ Page: 4 of 4

J: Reported between PQL and MDL.

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to:

Battelle

Attention: David Conner

3990 Old Town AVe., Suite C-205

San Diego CA 92110

Tel: (619)726-7311 Fax: (619)260-0882

APCL Analytical Report

Service ID #: 801-053799

Collected by: M. Woolfe

Collected on: 08/23/05

Received: 08/23/05

Extracted: 08/25/05 Tested: 08/30-31/05

Reported: 09/07/05

Sample Description: Water

Project Description: G486111-T3 3rd Quarter GW Sampling

Analysis of Water Samples

					Analysis Result		
Component Analyzed	Meth	od	Unit	PQL	MW-3-1 05-03799-1	MW-3-2 05-03799-2	
Dilution Factor N-NITROSO-DI-N-PROPYLAMINE	1625	М	$_{\mu\mathrm{g/L}}$	0.002	1 < 0.002	1 < 0.002	
				· · · · · · · · · · · · · · · · · · ·	Analysis Res	ult	
Component Analyzed	Method	Unit	PQL	MW-3-3 05-03799-3	MW-3-4 05-03799-4	MW-3-5 05-03799-5	
Dilution Factor				1	1	1	
N-NITROSO-DI-N-PROPYLAMINE	1625M	$_{\mu}\mathrm{g/L}$	0.002	< 0.002	< 0.002	< 0.002	

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Respectfully submitted

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 № 05-3799 \$\partial \text{Page: 1 of 1}

J: Reported between PQL and MDL.

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to:

Battelle

Attention: David Conner

3990 Old Town Ave, Suite C-205.

San Diego CA 92110

Tel: (619)726-7311 Fax: (619)260-0882

APCL Analytical Report

Service ID #: 801-053890

Collected by: MM Collected on: 09/02/05 Received: 09/02/05 Extracted: N/A Tested: 09/02/05

Reported: 09/06/05

Sample Description: Water from 4800 Oak Grove Dr. Project Description: G486090 JPL GW Mon 3Q05

Analysis of Water Samples

					Analysis Result			
Component Analyzed	Method	Un	iit	PQL	DUPE-9A-3 05-03890	•	MW-15 5-03890-2	
Dilution Factor PERCHLORATE	314.0	μg,	/L	4	1 1.1J		1 0.94J	
2.20					Analysis Result			
Component Analyzed		Method	Unit	PQL	DUPE-9A-3Q05 05-03890-1	MW-15 05-03890-2	TB-16-9/2/08 05-03890-3	

				A	Analysis Resul	t
Component Analyzed	Method	Unit	PQL	DUPE-9A-3Q05 05-03890-1	MW-15 05-03890-2	TB-16-9/2/09 05-03890-3
VOLATILE ORGANIC COMPOUNDS						
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 № 05-3890 \$\dagger\$ Page: 1 of 2

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

######################################				Analysis Result			
Component Analyzed	Method	Unit	PQL	DUPE-9A-3Q05 05-03890-1	MW-15 05-03890-2	TB-16-9/2/05 05-03890-3	
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
CIS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
ETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
HEXACHLOROBUTADIENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	1.3	1.4	1.4	
METHYL-T-BUTYL ETHER (MTBE)	524.2	$\mu g/L$	1	< 1	< 1	< 1	
4-METHYL-2-PENTANONE (MIBK)	524.2	$\mu g/L$	10	< 10	< 10	< 10	
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,1,1,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
TETRACHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
TOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,2,3-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,2,4-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,1,2-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}^{\mu g/L}$	0.5	< 0.5	< 0.5	< 0.5	
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
112TRICHLORO-122TRIFLUOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,2,4-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
VINYL CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
O-XYLENE	524.2	$\mu \mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5	
M/P-XYLENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Laboratory Director Applied P & CH Laboratories

Respectfully submitted

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 № 05-3890 ↓ Page: 2 of 2

N.D.: Not Detected or less than the practical quantitation limit.

J: Reported between PQL and MDL.

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: Battelle

Attention: David Conner

3990 Old Town Ave, Suite C-205

San Diego CA 92110

Tel: (619)726-7311 Fax: (619)260-0882

APCL Analytical Report

Service ID #: 801-053930

Collected by: MM

Collected on: 09/08-09/05

Received: 09/09/05 Extracted: N/A

Tested: 09/09-12/05 Reported: 09/12/05

Sample Description: Water from 4800 Oak Grove Dr., Pasadena.

Project Description: G486090 JPL GW Mon 3Q05

Analysis of Water Samples

Component Analyzed	Method	Unit	PQL	EB-13-9/8/05 05-03930-1	Analysis Result EB-14-9/9/05 05-03930-2	MW-18-1 05-03930-7
Dilution Factor	******	.,		1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	< 4	< 4
VOLATILE ORGANIC COMPOUNDS		•				
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}^{ m g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 № 05-3930 ឯ Page: 1 of 5

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				Analysis Result		
Component Analyzed	Method	Unit	PQL	EB-13-9/8/05	EB-14-9/9/05	MW-18-1
				05-03930-1	05-03930-2	05-03930-7
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	1.2	1.2	1.2
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	<1	<1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 № 05-3930 b Page: 2 of 5

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				Analysis Result					
Component Analyzed	Method	Unit	PQL	MW-23-4 05-03930-14	MW-24-4 05-03930-15	TB-17-9/8/05 05-03930-16	TB-18-9/9/05 05-03930-17		
Dilution Factor				1	1	1	1		
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	< 4	_	_		
VOLATILE ORGANIC COMPOUNDS		,							
Dilution Factor				1	1	1	1		
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMOBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMODICHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
N-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
2-BUTANONE	524.2	$\mu g/L$	10	< 10	< 10	<10	< 10		
CARBON TETRACHLORIDE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CHLORODIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CHLOROFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
4-CHLOROTOLUENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DIBROMOETHANE (EDB)	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROETHANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROETHENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROPROPANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,3-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CIS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
ETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1665 D006 № 05-3930 ឯ Page: 3 of 5

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

						Analysis Result				
Component Analyzed		Method	Unit	PQL	MW-23-4	MW-24-4	TB-17-9/8/05	TB-18-9/9/0		
						05-03930-14	05-03930-15	05-03930-16	05-03930-1	
HEXACHLOROBUTAD	IENE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
ISOPROPYLBENZENE	(CUMEN	E)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
P-ISOPROPYLTOLUEN			524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
METHYLENE CHLORI			524.2	$_{\mu}\mathrm{g/L}$	0.5	1.2	< 0.5	1.3	1.3	
METHYL-T-BUTYL ET	` `	,	524.2	$_{\mu}\mathrm{g/L}$	1	< 1	< 1	< 1	<1	
4-METHYL-2-PENTANO	ONE (MIB	K)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10	
NAPHTHALENE			524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
N-PROPYLBENZENE			524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
STYRENE			524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1,1,2-TETRACHLORO			524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1,2,2-TETRACHLORO			524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TETRACHLOROETHEN	NE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TOLUENE			524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2,3-TRICHLOROBENZ			524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2,4-TRICHLOROBENZ			524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1,1-TRICHLOROETHA			524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1,2-TRICHLOROETH	ANE		524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TRICHLOROETHENE			524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TRICHLOROFLUOROM		;	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2,3-TRICHLOROPROF			524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
112TRICHLORO-122TRI		ETHANE		$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2,4-TRIMETHYLBENZ			524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,3,5-TRIMETHYLBENZ	ZENE		524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
VINYL CHLORIDE			524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
O-XYLENE			524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
M/P-XYLENE			524.2	$_{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
					-2			Lilense		
Component Analyzed	Makhad	TT:4	DOI	DD 10	0.10.10		alysis Result			
Component Analyzed	Method	Unit	PQL		-9/8/05	6 EB-14-9/9 05-03930	•		-12-5	
5-15				00-03	3930-1	05-03930	0-2 05-039	930-3 05-03	930-4	
CHROMIUM (VI)	7196	$\mathrm{mg/L}$	0.01	< 0	0.01	< 0.01	< 0.	01 < 0	.01	
Dilution Factor					1	1	1	1	l	
CHROMIUM	200.8	μg/L	1	0.2	27J	0.59 J	10	.1 9.	9	
	:									
Component Analyzed	Meth	od	IImit	DOT	,	M (Analysis Res		· •	
Component Analyzed	Metn	oa	Unit	PQL		MW-14-4 5-03930-5	MW-14-5 05-03930-6	MW-18 05-0393		
CHROMIUM (VI)	7190	5 ı	ng/L	0.01		< 0.01	< 0.01	< 0.01		
Dilution Factor		•	/ T	_		1	1	1		
CHROMIUM	200.	8	$_{\mu}\mathrm{g/L}$	1		9.8	7.6	8.2		

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 № 05-3930 ↓ Page: 4 of 5

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Result	,
Component Analyzed	Method	Unit	PQL	MW-18-5 05-03930-8	MW-19-1 05-03930-9	MW-19-2 05-03930-10
CHROMIUM (VI) Dilution Factor	7196	mg/L	0.01	< 0.01	< 0.01 1	< 0.01 1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	6.9	6.3	14.1
				· · · · · · · · · · · · · · · · · · ·	Analysis Result	
Component Analyzed	Method	Unit	PQL	MW-19-3 05-03930-11	MW-19-4 05-03930-12	MW-19-5 05-03930-13
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01
Dilution Factor				1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	1	9.8	10.1	9.0

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Respectfully submit

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NELAP No.:02114CA Cl-1665 D006 № 05-3930 ឯ Page: 5 of 5

J: Reported between PQL and MDL.